<h2><SPAN name="chap11"></SPAN>CHAPTER XI</h2>
<p>My first step, in checking on our space plans, was to look up official
announcements. I found that on December 29, 1948, Defense Secretary James
Forrestal had released this official statement:</p>
<p>“The Earth Satellite Vehicle Program, which is being carried out
independently by each military service, has been assigned to the Committee on
Guided Missiles for co-ordination.</p>
<p>“To provide an integrated program, the Committee has recommended that
current efforts be limited to studies and component design. Well-defined areas
of such research have been allocated to each of the three military
departments.”</p>
<p>Appropriation bills had already provided funds for space exploration plans. The
Air Force research was indicated by General Curtis E. LeMay, who was then
Deputy Chief of Air Staff for Research and Development. In outlining plans for
an Air Engineering Design Center at Wright Field, General LeMay included these
space-exploration requisites:</p>
<p>“Flight and survival equipment for ultra-atmospheric operations,
including space vehicles, space bases, and devices for use therein.”</p>
<p>The idea of exploring space is, of course, nothing new. For many years, writers
of imaginative fiction have described trips to the moon and distant planets.
More recently, comic books and strips have gone in heavily for space-travel
adventures.</p>
<p>As a natural result of this, the first serious rocket experiments in this
country were labeled screwball stunts, about on a par with efforts to break
through the sonic barrier. The latter had been “proved” impossible
by aeronautical engineers; as for rocket flight, it was too silly for serious
consideration. Pendray, Goddard, and other rocket pioneers took some vicious
ridicule before America woke up to the possibilities.</p>
<p>Meantime, German scientists had gone far ahead. Their buzz bomb, a low-altitude
semi-guided missile, was just the beginning. Even the devastating V-2, which
soared high into the stratosphere before falling on England, was just a step in
their tremendous space program. If the Nazis could have hung on a year or two
more, the war might have had a grimly different ending.</p>
<p>When the Allies seized Nazi secrets, some of the German plans were revealed.
Among them was one for a huge earth satellite. From this base, which would
circle the earth some five hundred miles away, enormous mirrors would focus the
sun’s rays on any desired spot. The result: swift, fiery destruction of
any city or base refusing to surrender.</p>
<p>First publication of this scheme brought the usual jeers. Many people,
including some reputable scientists, believed it had been just a propaganda
plan that even Goebbels had discarded as hopeless.</p>
<p>Then the Pentagon announced the U.S. Earth Satellite Vehicle Program, along
with plans for a moon rocket, The artificial satellite is to be a large
rocket-propelled projectile. In its upward flight, it will have to reach a
speed of 23,000 miles an hour, to escape the earth’s pull of gravity. At
a height of about 500 miles, special controls will turn the projectile and
cause it to circle the earth. These controls will be either automatic or
operated from the ground, by radar. Theoretically, once such a vehicle is
beyond gravity’s magnetism, it can coast along in the sky forever. Its
rocket power will be shut off; the only need for such power would be if the
satellite veered off course. A momentary burst from the jets would be
sufficient to bring it back to its orbit.</p>
<p>Circling the earth in about two hours, this first satellite is expected to be
used as a testing station. Instruments will record and transmit vital
information to the earth—the effect of cosmic rays, solar radiation, fuel
required for course corrections, and many other items.</p>
<p>A second space base farther out will probably be the next step. It may be
manned, or it may be under remote control like the first. Perhaps the first
satellite vehicle will be followed by a compartmented operating base, a sort of
aerial aircraft carrier, with other rocket ships operating to and fro on the
earth shuttle. The moon rocket is expected to add to our information about
space, so that finally we will emerge with an interplanetary space craft.</p>
<p>The first attempts may fail. The first satellite may fall back and have to be
guided to an ocean landing. Or its controls might not bring it into the planned
orbit. In this case, it could coast on out into space and be lost. But sooner
or later, effective controls will be found. Then the manned space ships will
follow.</p>
<p>Once in free space, there will be no gravitational pull to offset. The space
ship and everything in it will be weightless. Shielding is expected to prevent
danger from cosmic rays and solar radiation.</p>
<p>The danger from meteorites has been partly discounted in one scientific study.
(“Probability that a meteorite will hit or penetrate a body situated in
the vicinity of the earth,” by G. Grimminger, <i>Journal of Applied
Physics</i>, Vol. 19, No. 10, pp. 947-956, October 1948) In this study, it is
stated that a meteorite is unlikely to penetrate the thick shell our space
vehicles will undoubtedly have. However, this applies only to the earth’s
atmosphere. Longer studies, using remote-controlled vehicles in space, may take
years before it will be safe to launch a manned space ship. Radar or other
devices may have to be developed to detect approaching meteorites at a distance
and automatically change a space ship’s course. The change required would
be infinitesimal, using power for only a fraction of a second.</p>
<p>But before we are ready for interplanetary travel, we will have to harness
atomic power or some other force not now available, such as cosmic rays.
Navigation at such tremendous speeds is another great problem, on which special
groups are now at work. A Navy scientific project recently found that strange
radio signals are constantly being sent out from a “hot spot” in
the Milky Way; other nebulae or “hot” stars may be similarly
identified by some peculiarity in their radio emanations. If so, these could be
used as check points in long-range space travel.</p>
<p>Escape from the earth’s gravity is possible even now, according to
Francis H. Clauser, an authority on space travel plans. But the cost would be
prohibitive, with our present rocket motors, and practical operations must wait
for higher velocity rocket power, atomic or otherwise. (“Flight beyond
the Earth’s Atmosphere, “<i>S.A.E. Quarterly Transactions</i>, Vol.
2, No, 4, October 1948.)</p>
<p>Already, a two-stage rocket has gone more than 250 miles above the earth. This
is the V-2-Wac Corporal combination. The V-2 rocket is used to power the first
part of the flight, dropping off when its fuel is exhausted. The Wac Corporal
then proceeds on its own fuel, reaching a fantastic speed in the thin air
higher up.</p>
<p>Hundreds of technical problems must be licked before the first satellite
vehicle can be launched successfully. Records on our V-2 rockets indicate some
of the obstacles. On the take-off, their present swift acceleration would
undoubtedly kill anyone inside. When re-entering the earth’s atmosphere
the nose of a V-2 gets red-hot.</p>
<p>Both the acceleration and deceleration must be controlled before the first
volunteers will be allowed to hazard their lives in manned rockets. Willi Ley,
noted authority on space-travel problems, believes that pilots may have to
accept temporary blackout as a necessity on the take-off. (Two of his books,
<i>Rockets and Space Travel</i> and <i>Outer Space</i>, give fascinating and
well-thought-out pictures of what we may expect in years to come.)</p>
<p>Some authorities believe that our space travel will be confined to our own
solar system for a long time, perhaps forever. The trip to the moon, though now
a tremendous project, would be relatively simple compared with a journey
outside our system. Escape from the moon, for the return trip, would be easier
than leaving the earth; because of its smaller mass, to escape the moon’s
gravitational pull would take a speed of about 5,000 miles an hour, against
23,000 for the earth. Navigation would be much simpler. Our globe would loom up
in the heavens, much larger and brighter than the moon appears to us. Radar
beams would also be a guide.</p>
<p>The greatest obstacle to reaching far-distant planet is the time required. In
the Project “Saucer” study of space travel, Wolf 359 was named as
the nearest star likely to have possibly inhabited areas. Wolf 359 is eight
light-years from the earth. The limiting speed in space, according to
Einstein’s law, would be just under the speed of light—186,000
miles per second. At this speed, Einstein states, matter is converted into
energy. It is a ridiculous assumption, but even if atomic power, or some force
such as cosmic rays, made an approach to that speed possible, it would still
take eight years to reach Wolf 359. The round trip would take sixteen.</p>
<p>There have been a few scientists who dispute Einstein’s law, though no
one has disproved it. If the speed of light is not an absolute limit for space
ships, then travel to remote parts of the universe may someday be possible.</p>
<p>Otherwise, a trip outside our solar system could be a lifetime expedition. Most
space travel would probably be limited to the planets of our sun—the
moon, Mars, Venus, Jupiter, and the others.</p>
<p>Although it may be many years before the first manned space ship leaves the
earth, we are already at work on the problems the crews would face. I learned
some of the details from a Navy flight surgeon with whom I had talked about
take-off problems.</p>
<p>“They’re a lot further than that” he told me. “Down at
Randolph Field, the Aero-Medical research lab has run into some mighty queer
things. Ever hear of ‘dead distance’?”</p>
<p>“No, that’s a new one.”</p>
<p>“Well, it sounds crazy, but they’ve figured out that a space ship
would be going faster than anyone could think.”</p>
<p>“But you think instantaneously,” I objected.</p>
<p>“Oh, no. It takes a fraction of a second, even for the fastest thinker.
Let’s say the ship was making a hundred miles a second—and
that’s slow compared with what they expect eventually. Everything would
happen faster than your nerve impulses could register it. Your comprehension
would always be lagging a split second behind the space ship’s
operation.”</p>
<p>“I don’t see why that’s so serious,” I said.</p>
<p>“Suppose radar or some other device warned you a meteorite was coming
toward you head-on. Or maybe some instrument indicated an error in navigation.
By the time your mind registered the thought, the situation would have
changed.”</p>
<p>“Then all the controls would have to be automatic,” I said. I told
him that I had heard about plans for avoiding meteorites. “Electronic
controls would be faster than thought.”</p>
<p>“That’s probably the answer,” he agreed. “Of course, at
a hundred miles a second it might not be too serious. But if they ever get up
to speeds like a thousand miles a second, that mental lag could make an
enormous difference, whether it was a meteorite heading toward you or a matter
of navigation.”</p>
<p>One of the problems he mentioned was the lack of gravity. I had already learned
about this. Once away from the earth’s pull, objects in the space ship
would have no weight. The slightest push could send crewmen floating around the
sealed compartment.</p>
<p>“Suppose you spilled a cup of coffee,” said the flight surgeon.
“What would happen?”</p>
<p>I said I hadn’t thought it out.</p>
<p>“The Randolph Field lab can tell you,” he said. “The coffee
would stay right there in the air. So would the cup, if you let go of it. But
there’s a more serious angle—your breath.”</p>
<p>“You’d have artificial air,” I began.</p>
<p>“Yes, they’ve already worked that out. But what about the breath
you exhale? It contains carbon dioxide, and if you let it stay right there in
front of your face you’d be sucking it back into your lungs. After a
while, it would asphyxiate you. So the air has to be kept in motion, and
besides that the ventilating system has to remove the carbon dioxide.”</p>
<p>“What about eating?” I asked. “Swallowing is partly gravity,
isn’t it?”</p>
<p>He nodded. “Same as drinking, though the throat muscles help force the
food down. I don’t know the answer to that. In fact, everything about the
human body presents a problem. Take the blood circulation. The amount of energy
required to pump blood through the veins would be almost negligible. What would
that do to your heart?”</p>
<p>“I couldn’t even guess,” I said.</p>
<p>“Well, that’s all the Aero-Medical lab can do—guess at it.
They’ve been trying to work out some way of duplicating the effect of
zero gravity, but there’s just no answer. If you could build a machine to
neutralize gravity, you could get all the answers, except to the ‘dead
distance’ question.</p>
<p>“For instance, there’s the matter of whether the human body would
even function without gravity. All down through the stages of evolution,
man’s organs have been used to that downward pull. Take away gravity, and
your whole body might stop working. Some of the Aero-Medical men I’ve
talked with don’t believe that, but they admit that long trips outside of
gravity might have odd effects.</p>
<p>“Then there’s the question of orientation. Here on earth, orienting
yourself depends on the feeling you get from the pull of gravity, plus your
vision. just being blindfolded is enough to disorient some people. Taking away
the pull of gravity might be a lot worse. And of course out in space your only
reference points would be distant stars and planets. We’ve been used to
locating stars from points on the earth, where we know their position. But how
about locating them from out in space, with a ship moving at great speed?
Inside the space ship, it would be something like being in a submarine.
Probably only the pilot compartment would have glass ports, and those would be
covered except in landing—maybe even then. Outside vision might be by
television, so you couldn’t break a glass port and let out your pressure.</p>
<p>“But to go back to the submarine idea. It would be like a sub, with this
big difference: In the submarine you can generally tell which way is down,
except maybe in a crash dive when you may lose your equilibrium for a moment.
But in the space ship, you could be standing with your feet on one spot, and
another crewman might be—relative to you—standing upside down. You
might be floating horizontally, the other man vertically. The more you think
about it, the crazier it gets. But they’ve got to solve all those
problems before we can tackle space.”</p>
<p>To make sure I had the details right, I checked on the Air Force research. I
found that the Randolph Field laboratory is working on all these problems, and
many more.</p>
<p>Although plans arc not far enough advanced to make it certain, probably animals
will be sent up in research rockets to determine the effect of no gravity
before any human beings make such flights. The results could be televised back
to the earth.</p>
<p>All through my check-up on space exploration plans, one thing struck me: I met
no resistance. There was no official reticence about the program; on the
contrary, nothing about it seemed secret.</p>
<p>Even though it was peacetime, this was a little curious, because of the
potential war value of an earth satellite vehicle. Even if the Nazi scheme for
destruction proved just a dream, an orbiting space base could be used for other
purposes. In its two-hour swing around the earth, practically all of the globe
could be observed-directly, by powerful telescopes, or indirectly, by a
combination of radar and television. Long-range missiles could be guided to
targets, after being launched from some point on the earth. As the missiles
climbed high into the stratosphere, the satellite’s radar could pick them
up and keep them on course by remote control.</p>
<p>There were other possibilities for both attack and defense. Ordinarily,
projects with wartime value are kept under wraps, or at least not widely
publicized. Of course, the explanation might be very simple: The completion of
the satellite vehicle was so remote that there seemed no need for secrecy. But
in that case, why had the program been announced at all?</p>
<p>If the purpose had been propaganda, it looked like a weak gesture. The Soviets
would not be greatly worried by a dream weapon forty or fifty years off.
Besides that, the Pentagon, as a rule, doesn’t go for such propaganda.
There was only one conventional answer that made any sense. If we had heard
that the Soviets were about to announce such a program, as a propaganda trick,
it would be smart to beat them to it. But I had no proof of, any such Russian
intention.</p>
<p>The date on Secretary Forrestal’s co-ordination announcement was December
30, 1948. One day later, the order creating Project “Saucer” had
been signed. That didn’t prove anything; winding up the year, Forrestal
could have signed a hundred orders. I was getting too suspicious.</p>
<p>At any rate, I had now analyzed the Gorman case and checked on our space plans.
Tomorrow I would see Redell and find out what he knew.</p>
<div style="break-after:column;"></div><br />