<SPAN name="chap01"></SPAN>
<h3> LETTER I </h3>
<P CLASS="noindent">
My dear Sir,</p>
<p>The influence which the science of chemistry exercises upon human
industry, agriculture, and commerce; upon physiology, medicine, and
other sciences, is now so interesting a topic of conversation
everywhere, that it may be no unacceptable present to you if I trace
in a few familiar letters some of the relations it bears to these
various sciences, and exhibit for you its actual effect upon the
present social condition of mankind.</p>
<p>In speaking of the present state of chemistry, its rise and
progress, I shall need no apology if, as a preliminary step, I call
your attention to the implements which the chemist employs—the
means which are indispensable to his labours and to his success.</p>
<p>These consist, generally, of materials furnished to us by nature,
endowed with many most remarkable properties fitting them for our
purposes; if one of them is a production of art, yet its adaptation
to the use of mankind,—the qualities which render it available to
us,—must be referred to the same source as those derived
immediately from nature.</p>
<p>Cork, Platinum, Glass, and Caoutchouc, are the substances to which I
allude, and which minister so essentially to modern chemical
investigations. Without them, indeed, we might have made some
progress, but it would have been slow; we might have accomplished
much, but it would have been far less than has been done with their
aid. Some persons, by the employment of expensive substances, might
have successfully pursued the science; but incalculably fewer minds
would have been engaged in its advancement. These materials have
only been duly appreciated and fully adopted within a very recent
period. In the time of Lavoisier, the rich alone could make chemical
researches; the necessary apparatus could only be procured at a very
great expense.</p>
<p>And first, of Glass: every one is familiar with most of the
properties of this curious substance; its transparency, hardness,
destitution of colour, and stability under ordinary circumstances:
to these obvious qualities we may add those which especially adapt
it to the use of the chemist, namely, that it is unaffected by most
acids or other fluids contained within it. At certain temperatures
it becomes more ductile and plastic than wax, and may be made to
assume in our hands, before the flame of a common lamp, the form of
every vessel we need to contain our materials, and of every
apparatus required to pursue our experiments.</p>
<p>Then, how admirable and valuable are the properties of Cork! How
little do men reflect upon the inestimable worth of so common a
substance! How few rightly esteem the importance of it to the
progress of science, and the moral advancement of mankind!—There is
no production of nature or art equally adapted to the purposes to
which the chemist applies it. Cork consists of a soft, highly
elastic substance, as a basis, having diffused throughout a matter
with properties resembling wax, tallow, and resin, yet dissimilar to
all of these, and termed suberin. This renders it perfectly
impermeable to fluids, and, in a great measure, even to gases. It is
thus the fittest material we possess for closing our bottles, and
retaining their contents. By its means, and with the aid of
Caoutchouc, we connect our vessels and tubes of glass, and construct
the most complicated apparatus. We form joints and links of
connexion, adapt large apertures to small, and thus dispense
altogether with the aid of the brassfounder and the mechanist. Thus
the implements of the chemist are cheaply and easily procured,
immediately adapted to any purpose, and readily repaired or altered.</p>
<p>Again, in investigating the composition of solid bodies,—of
minerals,—we are under the necessity of bringing them into a liquid
state, either by solution or fusion. Now vessels of glass, of
porcelain, and of all non-metallic substances, are destroyed by the
means we employ for that purpose,—are acted upon by many acids, by
alkalies and the alkaline carbonates. Crucibles of gold and silver
would melt at high temperatures. But we have a combination of all
the qualities we can desire in Platinum. This metal was only first
adapted to these uses about fifty years since. It is cheaper than
gold, harder and more durable than silver, infusible at all
temperatures of our furnaces, and is left intact by acids and
alkaline carbonates. Platinum unites all the valuable properties of
gold and of porcelain, resisting the action of heat, and of almost
all chemical agents.</p>
<p>As no mineral analysis could be made perfectly without platinum
vessels, had we not possessed this metal, the composition of
minerals would have yet remained unknown; without cork and
caoutchouc we should have required the costly aid of the mechanician
at every step. Even without the latter of these adjuncts our
instruments would have been far more costly and fragile. Possessing
all these gifts of nature, we economise incalculably our time—to us
more precious than money!</p>
<p>Such are our instruments. An equal improvement has been accomplished
in our laboratory. This is no longer the damp, cold, fireproof vault
of the metallurgist, nor the manufactory of the druggist, fitted up
with stills and retorts. On the contrary, a light, warm, comfortable
room, where beautifully constructed lamps supply the place of
furnaces, and the pure and odourless flame of gas, or of spirits of
wine, supersedes coal and other fuel, and gives us all the fire we
need; where health is not invaded, nor the free exercise of thought
impeded: there we pursue our inquiries, and interrogate Nature to
reveal her secrets.</p>
<p>To these simple means must be added "The Balance," and then we
possess everything which is required for the most extensive
researches.</p>
<p>The great distinction between the manner of proceeding in chemistry
and natural philosophy is, that one weighs, the other measures. The
natural philosopher has applied his measures to nature for many
centuries, but only for fifty years have we attempted to advance our
philosophy by weighing.</p>
<p>For all great discoveries chemists are indebted to the
"balance"—that incomparable instrument which gives permanence to
every observation, dispels all ambiguity, establishes truth, detects
error, and guides us in the true path of inductive science.</p>
<p>The balance, once adopted as a means of investigating nature, put an
end to the school of Aristotle in physics. The explanation of
natural phenomena by mere fanciful speculations, gave place to a
true natural philosophy. Fire, air, earth, and water, could no
longer be regarded as elements. Three of them could henceforth be
considered only as significative of the forms in which all matter
exists. Everything with which we are conversant upon the surface of
the earth is solid, liquid, or aeriform; but the notion of the
elementary nature of air, earth, and water, so universally held, was
now discovered to belong to the errors of the past.</p>
<p>Fire was found to be but the visible and otherwise perceptible
indication of changes proceeding within the, so called, elements.</p>
<p>Lavoisier investigated the composition of the atmosphere and of
water, and studied the many wonderful offices performed by an
element common to both in the scheme of nature, namely, oxygen: and
he discovered many of the properties of this elementary gas.</p>
<p>After his time, the principal problem of chemical philosophers was
to determine the composition of the solid matters composing the
earth. To the eighteen metals previously known were soon added
twenty-four discovered to be constituents of minerals. The great
mass of the earth was shown to be composed of metals in combination
with oxygen, to which they are united in one, two, or more definite
and unalterable proportions, forming compounds which are termed
metallic oxides, and these, again, combined with oxides of other
bodies, essentially different to metals, namely, carbon and
silicium. If to these we add certain compounds of sulphur with
metals, in which the sulphur takes the place of oxygen, and forms
sulphurets, and one other body,—common salt,—(which is a compound
of sodium and chlorine), we have every substance which exists in a
solid form upon our globe in any very considerable mass. Other
compounds, innumerably various, are found only in small scattered
quantities.</p>
<p>The chemist, however, did not remain satisfied with the separation
of minerals into their component elements, i.e. their analysis; but
he sought by synthesis, i.e. by combining the separate elements and
forming substances similar to those constructed by nature, to prove
the accuracy of his processes and the correctness of his
conclusions. Thus he formed, for instance, pumice-stone, feldspar,
mica, iron pyrites, &c. artificially.</p>
<p>But of all the achievements of inorganic chemistry, the artificial
formation of lapis lazuli was the most brilliant and the most
conclusive. This mineral, as presented to us by nature, is
calculated powerfully to arrest our attention by its beautiful
azure-blue colour, its remaining unchanged by exposure to air or to
fire, and furnishing us with a most valuable pigment, Ultramarine,
more precious than gold!</p>
<p>The analysis of lapis lazuli represented it to be composed of
silica, alumina, and soda, three colourless bodies, with sulphur and
a trace of iron. Nothing could be discovered in it of the nature of
a pigment, nothing to which its blue colour could be referred, the
cause of which was searched for in vain. It might therefore have
been supposed that the analyst was here altogether at fault, and
that at any rate its artificial production must be impossible.
Nevertheless, this has been accomplished, and simply by combining in
the proper proportions, as determined by analysis, silica, alumina,
soda, iron, and sulphur. Thousands of pounds weight are now
manufactured from these ingredients, and this artificial ultramarine
is as beautiful as the natural, while for the price of a single
ounce of the latter we may obtain many pounds of the former.</p>
<p>With the production of artificial lapis lazuli, the formation of
mineral bodies by synthesis ceased to be a scientific problem to the
chemist; he has no longer sufficient interest in it to pursue the
subject. He may now be satisfied that analysis will reveal to him
the true constitution of minerals. But to the mineralogist and
geologist it is still in a great measure an unexplored field,
offering inquiries of the highest interest and importance to their
pursuits.</p>
<p>After becoming acquainted with the constituent elements of all the
substances within our reach and the mutual relations of these
elements, the remarkable transmutations to which the bodies are
subject under the influence of the vital powers of plants and
animals, became the principal object of chemical investigations, and
the highest point of interest. A new science, inexhaustible as life
itself, is here presented us, standing upon the sound and solid
foundation of a well established inorganic chemistry. Thus the
progress of science is, like the development of nature's works,
gradual and expansive. After the buds and branches spring forth the
leaves and blossoms, after the blossoms the fruit.</p>
<p>Chemistry, in its application to animals and vegetables, endeavours
jointly with physiology to enlighten us respecting the mysterious
processes and sources of organic life.</p>
<br/><br/><br/>
<div style="break-after:column;"></div><br />